
Book
A Simplified Approach

to

Data Structures
Prof.(Dr.)Vishal Goyal, Professor, Punjabi University Patiala

Dr. Lalit Goyal, Associate Professor, DAV College, Jalandhar

Mr. Pawan Kumar, Assistant Professor, DAV College, Bhatinda

Shroff Publications and Distributors
Edition 2014

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

2

o Circular Linked list

• Traversal in Circular Linked List

• Insertion operation

• Deletion operation

• Applications of Circular Linked List

o Two-Way Linked List

• Traversal in two way linked list

• Searching in two way linked list

• Insertion operation

• Deletion Operation
3

CONTENT

4

Circular Linked List(continued..)

A Circular Linked List is a list in which last node points back to

the first node instead of containing the Null pointer in the next part

of the last node. The circular linked list can be shown

diagrammatically.

5 10 12 97

Begin

A Circular Linked List

All the operations which can be performed on ordinary

singular linked list can easily be performed on circular

linked list with the following changes:

o Looking for the end of the linked list –

• In the case of one way singular linked list, the next part of the

last node will contain Null address.

• In the case of circular linked list, the next part of the last node

consist of address of the first node i.e. Begin.

5

Circular linked list(conti..)

6

Circular linked list(conti..)

For reaching at the end of the circular linked list,we will

compare the address of the first node that is Begin with the

address stored in the Next part of each node. If both the

addresses come out to be same, then we have reached at the

circular list

When a new node is to be inserted at the end of the circular

linked list, it’s next part will contain the address of the first

node instead of null as is in the case of one-way singular

linked list.

The traversal of circular linked list having list pointer variable Begin

and a pointer variable Pointer to traverse the linked list from begin

to end.

Step1: If Begin = Null Then

Print: “Circular linked list is empty”

Exit

[End If]

Step2: Process Begin→ Info

7

Algorithm : Traversal in a circular linked list

Traversal in Circular Linked List

Step3: Set Pointer = Begin→ Next

Step4: Repeat steps 5 and 6 while Pointer ≠ Begin

Step5: Process Pointer→ Info

Step6: Set Pointer = Pointer→ Next

[End Loop]

Step7: Exit

8

In this case, the New node is inserted as the first node and the

next part of the last node is changed and now it points to the

newly inserted node as shown below in figure:

Insertion at the Beginning of Circular Linked List

Begin

7 5 10 12 9

9

New

Insertion of a New Node at the Beginning of a Circular

Linked List

Algorithm: Insertion at the Beginning

Step1: If Free = Null Then

Print: “No free space available for insertion”

Exit

[End If]

Step2: Set New = Free And Free = Free → Next

Step3: Set New → Info = Data

10

Step4: If Begin = Null Then

Set Begin = New

Set New → Next = Begin

Exit

[End If]

Step5: Set Pointer = Begin

Step6: Repeat while Pointer→Next ≠ Begin

Set Pointer = Pointer→ Next

[End Loop]

Insertion at the Beginning(cont…)

11

Step7: Set New → Next = Begin

Step8: Set Begin = New

Step9: Set Pointer→ Next = Begin

Step10: Exit

Insertion at the Beginning (cont…)

12

In the process of inserting an element at the end of the circular

linked list, the address stored in the Next part of the last node and

next part of New node need to be changed as shown below:

13

Insertion at the End of Circular Linked List

Begin

7 5 10 12 9

13

New

Insertion of a Node ‘New’ at the End of the circular linked list

Algorithm: Insertion at the End

Step1: If Free = Null Then

Print: “No Free space available for Insertion”

Exit

[End If]

Step2: Allocate memory to node New

Set New = Free and Free = Free → Next

Step3: Set New→ Info = Item

14

Step4: If Begin = Null Then

Set Begin = New And New → Next = Begin

Exit

[End If]

Step5: Set Pointer = Begin

Step6: Repeat while Pointer→ Next ≠ Begin

Set Pointer = Pointer→ Next

[End Loop]

Step7: Set Pointer→ Next = New and New → Next = Begin

Step8: Exit

Insertion at the End (continued…)

15

16

Delete First Node in Circular Linked List

Begin

7 5 10 12 9

To delete the first node from the circular linked list,Begin will

point to info part of second node and Next part of last node will

point to info part of second node.

Deletion of First Node in Circular Linked List

17

Delete Last Node in Circular Linked List

Begin

7 5 10 12 9

To delete the last node from the circular linked list the Next part of

Second last node will point to the Info part of first node and last

node will be deleted.

Deletion of Last Node in Circular Linked List

Applications of Circular Linked List

Circular linked list can be used for:-

Implementing a time sharing problem of the operating

system. In The operating system must maintain a list of

executing processes and must alternately allow each process to

use a slice of CPU time, one process at a time.The operating

system will pick a process; let it use a small amount of CPU

time and then move to next process. For this application there

should be no Null Pointer unless there is no process requesting

CPU time.

18

In Two-Way Linked List, we traverse the list in both the directions

• Forward direction (from beginning to end)

• Backward direction (from end to beginning).

The Two-Way Linked List is also known as Doubly Linked List. In

Two-Way Linked List, each node is divided into three parts: Pre,

Info, Next. The structure of a node used in Two-Way Linked List is

as shown below:

Two-Way Linked List(Doubly Linked List)

19

Pre Info Next

Structure of a Node used in a Two-Way Linked List

• Pre part contains the address of the preceding node.

• Info part contains the element.

• Next part contains the address of the Next node.

Two-Way Linked List (conti…)

20

Here in Two-Way Linked List, two list Pointer variables i.e. Begin and

End are used which contains the address of the first node and last

node of the Linked List respectively . Two-Way Linked List can be

shown diagrammatically as:

The Pre part of the first node of a Two-Way Linked List will contain

Null as there is no node preceding the first node and the Next part of

last node will contain Null as there is no node following the last node.

Two-Way Linked List (conti…)

10 12 8 7

21

Begin End

Pre Info Next

Null Null

Two-Way Linked List (conti…)

Various operations performed on Two-Way Linked List or

double linked list:

•Traversing

•Searching

•Insertion

•Deletion

22

A Two-Way Linked List can be traversed in both the

directions:

•Forward direction, the Pointer variable will be assigned with

the address stored in the Begin pointer variable and reach at

node whose Next part contains Null i.e. we reach at the end of

list.

• Backward direction, the Pointer variable will be assigned

with the address stored in the End pointer variable and move

backward tiill we reach at node whose Pre part contains Null

i.e. we reach at the beginning of the list. The variable Pointer

keeps track of the address of the current node.

Traversing a Two-Way Linked List

23

Step1: If End = Null Then

Print: “Linked List is empty”

Exit

[End If]

Step2: Set Pointer = End

Step3: Repeat while Pointer ≠ Null

Process Pointer → Info

Set Pointer = Pointer → Pre

[End Loop]

Step4: Exit

24

Algorithm: Traversing a two-way linked list

To find the location of a given item in linked list:

•Traverse the list either from the end or from beginning of the

linked list.

•Keep comparing the element stored in each node with the

desired item.

•If desired item is found then further traversing is stopped and

address of the node containing the desired element is

returned.

25

Searching in a Two-Way Linked List

To find the position of a given element ‘data’ in a Two-Way

Linked List by traversing it from end to beginning.

Step1: If End = Null Then

Print: “Linked List is empty”

Exit

[End If]

Step2: Set Pointer = End

Algorithm: Searching in Double Linked List

26

Step3: Repeat while Pointer ≠ Null

If Pointer → Info = Data Then

Print: “Element Data is found at

address”:Pointer

Exit

Else

Set Pointer = Pointer → Pre

[End If]

[End Loop]

Step4: Print: “Element Data is not found in the linked list”

Step5: Exit

27

Searching in Double Linked List

Insertion of an element in Two Way Linked List

Insertion can take place at various positions in a linked list

such as:

•At beginning of linked list

•At the end of linked list or after any particular node in a

linked list. Insertion at the beginning or at the end of the

linked list can be accomplished after changing a few pointers.

•Insertion after a particular node in the linked list requires

finding the location of the node after which new node is to be

inserted.

28

Insertion of node at Beginning of doubly linked list

An element Data is to be inserted at the beginning of the doubly linked

list.

Begin

Null 10 12 8 7 Null

End

29

New

Insertion of a node at the Beginning in a Doubly linked List

DataNull

Algorithm: Insertion of a New node at Beginning

Step1: If Free = Null Then

Print: “Free space not available”

Exit

[End If]

Step2: Allocate memory to node New

(Set New = Free And Free = Free → Next)

Step3: Set New → Pre = Null And New → Info = Data

30

Insertion of a New node at Beginning

Step4: If Begin = Null Then

Set New → Next = Null And End = New

Else

Set New → Next = Begin And Begin → Pre = New

[End If]

Step5: Set Begin = New

Step6: Exit

31

Insertion of New node after particular Data

Insertion after a particular node requires finding the location of the

node after which new node is to be inserted. After finding the

desired node, the New node can be inserted easily by changing few

pointers as shown:

Begin

Null 10 12 8 7 Null

End

32

New

Item

Successor=Pointer → Next

New → Next=Successor

Pointer → Next=New

New → Pre=Pointer

Successor →Pre=New

Insertion of a node ‘New’ in the Linked List after a particula

element ‘Data’

Insert a New node ‘Item’ after a given element ‘Data’ in the Two-

Way Linked List

Step1: If Free = Null Then

Print: “Free space not available”

Exit

[End If]

Step2: Begin = Null Then

Print: “List is Empty, No insertion will take place”

Exit

[End If]

Algorithm: Insertion after particular node

33

Insertion after particular node(conti..)

Step3: Set Pointer = Begin

Step4: Repeat while Pointer → Next ≠ Null

And Pointer→ Info ≠ Data

Pointer = Pointer → Next

[End Loop]

Step5: If Pointer → Next = Null And Pointer → Info ≠ Data

Print: “Item cannot be inserted as element Data

is not present”

Exit

[End If]

34

Step6: Allocate memory to node New

(Set New=Free and Free = Free → Next)

Set New → Info = Item

Step7: If Pointer→ Next ≠ Null Then

Successor = Pointer→ Next

New → Next = Successor

Pointer→ Next = New

New → Pre = Pointer

Successor→ Pre = New

35

Insertion after particular node(conti..)

Insertion after particular node(conti..)

Else

New → Next = Null

New → Pre = Pointer

Pointer→ Next = New

End = New

[End If]

Step8: Exit

36

Deleting a node with given Item

For deleting a particular node:

•Traverse the list either in forward or backward direction to locate

the node containing the element to be deleted

•If the desired node is not found and we reach at the end of a list

then an appropriate message is displayed.

•If the desired node is found then it can be removed from the linked

list by changing few pointers as shown:

Begin

5 8 7 9

End

37

Null Null

A Two-Way Linked List with 4 nodes

Deleting 1st node with given Item

CASE1: Suppose we want to delete an element 5, which is contained

in the first node of the list. Deletion will be performed as shown in the

figure below:

Begin

Null 5 8 7 Null9

End

38

Deleting the 1st node of a Two-Way linked List

Begin=Begin → Next

Begin → Pre=Null

Successor

Null

Deleting a particular node

CASE2: Suppose we want to delete an element 7, which is

contained in a node that lies between the first and last node of

the list then deletion will be performed as shown in the figure

below:

Begin

Null 5 8 7 Null9

End

Previous → Next=Successor

Successor→ Pre=Previous

39

Previous Pointer Successor

Deleting a Node present between the first and the last node of a Two-

Way Linked List.

Deleting last node with given item

CASE3: Now we will delete an element 9 which is encountered

in the node which is last node of the list as shown:

Begin

Null 5 8 7 Null9

End

Previous → Next=Null

End=Previous

40

Deleting the last node from a Two-Way Linked List

Null

Step1: If Begin = Null Then

Print: “Linked List is already empty”

Exit

[End If]

Step2: If Begin→ Info = Item Then //First node to be deleted

Pos = Begin

Begin = Begin→ Next

Begin→ Pre = Null

Algorithm: Deleting a node with given Item(conti..)

41

Deleting a node with given Item(continue..)

//Deallocate memory held by Pos

Pos → Next = Free, Free = Pos

Exit

[End If]

Step3: Set Pointer = Begin→ Next

Step4: Repeat while Pointer→ Next ≠ Null

And Pointer→ Info ≠ Item

Set Pointer = Pointer→ Next

[End Loop]

42

Deleting a node with given Item (continue..)

Step5: If Pointer→ Next = Null And Pointer→ Info ≠ Item

Print: “ Item to be deleted not found”

Exit

[End If]

Step6: If Pointer→ Next = Null Then //last node to be deleted

Set Previous = Pointer→ Pre

Set Previous → Next = Null

Set End = Previous

Else

Set Previous = Pointer→ Pre

Set successor = pointer→ Next

Set Previous → Next = successor

Set successor→ pre = Previous

[End if] 43

44

Deleting a node with given Item

Step 7: Deallocate memory helld by pointer

Pointer → Next = Free, Free = Pointer

Step 8: Exit

